
DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-1 BRAWLER

DRAFT

2.20 FLIGHT POSTURE

The purpose of the Flight Posture Decision (FPD) Functional Element (FE) is to model the
flight leader decision process of choosing the flight posture that will best satisfy the short-
range and long-range objectives of the flight, given the current situation.

Figure 2.20-1 shows the hierarchy of decisions made by Brawler decision-makers. The
flight posture decision occurs at the highest level and determines the general course of
action. It is made on the basis of broad assessments of the situation, such as force ratios
and engagement geometry, and also on the basis of user-supplied priorities. At the next
level the flight leader determines the tactics that should be used to implement the flight
posture. As a result of this decision, a specific communication is sent to other members of
the flight informing them of the tactics. The effect of the message is to influence the values
that other pilots use to score the alternative actions they consider. For instance, an order to
attack a certain aircraft results in the subordinate perceiving that hostile as being more
valuable; offensive pilot postures are weighted favorably. Below the flight tactics decision
are decisions made by each individual pilot that determine his posture and his weapon and
maneuver decisions in light of the ordered tactic. The primary effect of high-level decisions
is to control the lower level decisions by modifying their evaluation functions and by
determining which lower level alternative actions will be considered. High-level decisions
can be made on the basis of more aggregated representations of the external world,
resulting in considerable computational efficiency.

FIGURE 2.20-1. Brawler Decision Hierarchy.

Flight Posture Decision
• Offensive Posture
• Defensive Posture
• Search Posture

Flight Tactics Decision
• Simultaneous Attack
• Shooter Cover Attack
• Defensive Split
• Hook-Drag
• Etc.

Pilot Maneuver Decision
• Desired Vector Velocity
• Desired Acceleration
• Etc.

Weapon Employment
Decision

• Fire
• Do Not Fire

Pilot Posture Decision
• Offensive Maneuvers VS?
• Evasive Maneuver VS?
• Cover Leader
• Search
• Etc.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-2 Update: 12/31/97

DRAFT

There are currently eight alternative flight postures from which the FPD maker may
choose. There are also flight postures associated with SAM sites and GCI/AWACS
entities, which have three available postures.

To choose between the courses of action when the value-driven system is operative,
predictions are made of the overall hostile value killed, kill, and the overall friendly value
lost, risk. A prediction of the ability to continue the mission after engagement is made.
This is done in a heuristic manner by making general judgments regarding the importance
of the predicted long-term outcome of the engagement versus the importance of the
expected short-term outcome of the engagement. In the case of the attack-immediate
posture, for instance, the short- and long-term phases are given equal weight, while in the
case of the disengage posture the long-term phase is given zero weight.

Implementation of a flight posture involves two things: setting of offensive, defensive, and
mission importance multipliers that influence the value functions of other decisions lower
in the hierarchy, and limiting the flight tactics that may be considered. For example, the
close-from-long-range posture sets the offensive multiplier at a value of 1.0 (agg fac), the
defensive multiplier at 0.5, and the mission multiplier at 0.1, while the disengage posture
sets these values at, respectively, the maximum of one-fourth of aggfac or 0.5, 1.0, and 0.5.
Any limiting of the flight tactics that may be considered is user controlled and causes only
those flight tactics consistent with the objectives of the selected flight posture to be
considered.

2.20.1 Functional Element Design Requirements

The FPD function will simulate the selection of a flight posture by a flight leader based
upon information about his flight and other known friendly and hostile flights. This
selection will be simulated by a process of alternative projection, and evaluation which will
result in appropriate simulated action by the decision-maker. The function will be executed
repeatedly for each pilot in the scenario so that a postures affecting offensive and defensive
actions can vary in response to changing tactics and engagement factors over the course of
simulation execution.

a. Brawler will simulate flight leader selection of flight posture from among at
least eight (8) possible alternatives. The alternatives will be:

1. Mission: This posture results in flight performing routine activities such
as flying towards a route point or orbiting a CAP station.

2. Escort: Selected when the flight is escorting a group of bombers. A
value-driven decision weighing the risk to the penetrators will be made
when deciding whether to engage interceptors.

3. GCI Mission: Allows the flight to engage in drag tactics specified by a
GCI or AWACS controller.

4. Attack Immediate: The flight attacks hostiles in the within-visual-range
(WVR) arena.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-3 BRAWLER

DRAFT

5. Evade then Reengage: The flight evades the hostiles but does not
disengage; the intent is to recover after being “jumped” and then continue
the engagement.

6. Disengage: The flight attempts to disengage safely from hostile forces.

7. Close from Long Range: Used to deal with the maneuvers prior to an
attack. It also includes the attack phase when medium- and long-range
active missiles are used.

8. Follow GCI: A restricted subset of 3 above; the flight is forced to follow
the GCI instructions without other options.

9. A ninth flight posture Return to Base, is present in a rudimentary form
but is not fully implemented.

b. There will also be flight postures associated with SAM sites and GCI/AWACS
entities which will be:

1. Informational: Information concerning the location and velocity of
hostiles detected by the GCI radar is broadcast to friendly flights.

2. Intercept: The GCI controller provides steering to the controlled flight to
achieve a lag intercept of a hostile group.

3. Drag: The GCI or AWACS controller vectors a group of friendlies in
front of a hostile flight, attempting to drag the hostiles into an attack by a
second group of friendlies.

c. Brawler will simulate evaluation of each alternative posture through a process
of scoring expected outcomes so that selection can be made from among ranked
alterations.

d. Brawler will simulate selection of the best alternative by placing the highest
scoring alternative in the pilot mental model of the flight leader.

e. Brawler will simulate actions related to the selected flight posture by simulating
transmission of radio messages to the flight or other appropriate actions by the
flight leader.

These requirements will be satisfied by the combined implementation of the design
elements described in the following section. They were inferred from descriptions of how
the existing model currently performs the FPD function.

2.20.2 Functional Element Design Approach

This section contains a description of the design approach that will implement the design
requirements outlined in the previous section.

To choose between the alternative postures, predictions are made of the overall hostile
value expected to be killed, denoted below by the variable kill, and the overall friendly
value expected to be lost, denoted below by the variable risk, if the candidate posture is

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-4 Update: 12/31/97

DRAFT

followed. A prediction of the ability to continue the mission after engagement is also made.
This is done by making general judgments regarding the importance of the predicted long-
term outcome of the engagement versus the importance of the expected short-term outcome
of the engagement. In the case of the attack-immediate posture, for instance, the short- and
long-term phases are given equal weight, while in the case of the disengage posture the
long-term phase is given zero weight.

Other general parameters characteristic of each posture specify the short-term importance
of offensive and defensive factors. In the attack-immediate posture these are given full
weight versus the long term considerations. In the disengage posture, because the pilots
will be trying to leave the arena, short-term factors are of less importance (attack
opportunities may be bypassed if trying to disengage) so each factor is given a weight of
only 0.3 on a zero-to-one scale. The evade-with-intent-to-reengage posture is an
intermediate case and the weights used here are 0.5.

Selection of the flight posture alternative is performed by the following procedure.

1. Generate a candidate flight posture alternative.
2. Project the candidate alternative.
3. Evaluate the projected candidate alternative.
4. Select the highest scoring candidate.
5. Schedule actions associated with the chosen alternative.

Then subroutine aproj4 projects the outcome of that alternative over the next few seconds.
Subroutine aeval4 then evaluates or scores the outcome. The resultant value, altvly, is
weighted with any user-specified production rule bias resulting in a net value altvlx. This
is saved on a list and compared with the value of other alternatives. This process repeats
for each candidate alternative to be considered. The best scoring alternative is selected
from the list as the desired action. Unneeded alternative descriptions are deleted and the one
picked is placed in the althld array in the /althld/ common block and the cactn array in the
/mind2/ common block.

Design Element 20-1: Generate a Candidate Flight Posture Alternative

Subroutine aslct4 generates one of the eight candidate flight posture alternatives each time
it is called. An initialization call positions the selection algorithm at the beginning of the
list of flight posture alternatives. Each successive call to the alternative generation routine
aslct4 returns the next alternative in order until the list is exhausted, at which point the more
flag is set to false to indicate that there are no more alternatives. Generation of an
alternative simply consists of specifying which of the available postures the alternative is.
For each alternative generated, projection and evaluation are performed.

Design Element 20-2: Project the Candidate Alternative

Subroutine aproj4 predicts the results of the candidate flight posture alternative by
projecting the alternative forward in time by a few seconds. The primary results of the
prediction are the anticipated value of hostiles killed (kill) and the anticipated value of
friendlies lost (risk).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-5 BRAWLER

DRAFT

These factors are used along with the situational assessment to estimate the overall risk and
kill values for the posture being considered. The formulas used are:

risk = wa(riska) + ws(risks)(fd)

kill = wa(killa) + ws(kills)(fo)

where killa is the long-term expected hostile kills and riska is the long-term expected
friendly losses (both expressed in value units), and kills and risks are corresponding
numbers based on a short-term situational assessment. wa and ws are weights (wa+ws=1)
giving the relative importance of short- and long-term considerations. fo and fd are
parameters giving the importance of offensive and defensive factors in the short-term phase
of an engagement. The weights wa and ws are functions of the estimated importance of the
long-term phase, Wa, and the expected overall destruction rates for the short- and long-term
phases:

wa = k(Wa)(killa2 + riska2)

ws = k(1-Wa)[(kills)(fo)2 + (risks)(fd)2]

where k is chosen to normalize wa+ws. The rationale for avoiding the simpler assignment
wa=Wa is that a high kill rate (overall) in the early situational phase leaves little of
importance for the long-term phase. The terms situational and a priori are used to refer to
the short- and long-term phases of the engagement since, at this aggregated level, air
combat can be viewed as consisting of a short-term phase where the entry conditions for
the engagement play an important role (situational), followed by a later phase which, if
achieved, is somewhat unpredictable from initial conditions (hence the term a priori).

The ability to fulfill mission responsibilities after the engagement is computed according
to a smoothed step function (the border function) that breaks at the point where predicted
losses reach one friendly aircraft. Other terms for predicted fuel state and time loss are
present in a rudimentary form.

Design Element 20-3: Evaluate the Projected Candidate Alternative

Subroutine aeval4 evaluates the projected candidate alternative. The principal component
of the alternative score is the net value killed: kill*aggfac-risk. The factor aggfac is the
flight leader's aggressiveness factor and influences his relative perception of the utility of
destroying hostiles.

Scoring of flight postures uses the value function:

kill(aggfac) - risk + vmisn(fmisn)

where aggfac is an aggressiveness factor that may be set from input data for each flight,
fmisn is a variable varying from zero to one which indicates the ability to continue the
mission if the posture is adopted, and vmisn is the user input value of the mission.

The aeval4 routine assigns a basic flight posture score based upon the ability to complete
the mission, weighted by the value of the mission, the excess fuel resulting from the current

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-6 Update: 12/31/97

DRAFT

posture, weighted by the value of excess fuel, and the time taken by the current candidate
posture, weighted by the value of time. This score is then adjusted by factors such as the
anticipated kills, weighted by the flight’s aggressiveness factor, the presence or absence of
GCI vectoring inputs, and a range factor that rewards selecting a short-range posture if
hostiles are close and a long range posture when hostiles are distant. Finally, a hysteresis
factor is added that rewards selection of the same posture as was selected last time.

Design Element 20-4: Choose a Flight Posture Alternative

Subroutine pkactn is the executive decision-making routine which selects the highest
scoring flight posture alternative. The algorithm loops through appropriate candidate
alternatives and selects the highest scoring one.

Design Element 20-5: Implement Actions of Chosen Alternative

Subroutine akshn4 implements the chosen alternative. The flight leader's mission,
offensive, and defensive multipliers are set according to the selected alternative. These
multipliers implement the flight posture alternative by influencing the value functions of
other decisions lower in the decision hierarchy.

2.20.3 Functional Element Software Design

This section contains the software design necessary to implement the design requirements
and the design approach defined in the preceding sections. The first subsection describes
the subroutine hierarchy and describes how the subroutines work to make the flight posture
decision. Subsequent subsections contain functional flow diagrams and describe all
important operations represented by each block in the diagrams.

Flight Posture Decision Subroutine Hierarchy and Description

The major routines comprising the flight posture decision algorithm and their purpose are
given below with the indentation of the routine name used to indicate the level of the
routine within the calling tree.

modsel- pilot decision executive
pkactn - generalized value-driven decision executive

aslc4i - initializes flight posture alternative generation procedure
aeva4i - initializes flight posture alternative candidate evaluation

 procedure
aslct4 - generates candidate flight posture alternative

alt41 - generates mission flight posture alternatives
aproj4 - projects candidate flight posture alternative

tloss - evaluates total losses for a flight posture alternative
aeval4 - evaluates candidate flight posture alternative

akshn4 - implements flight posture decision
gcitac - changes the flight posture and tactic per the GCI message

Figure 2.20-2 presents this same information in standard calling-tree format.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-7 BRAWLER

DRAFT

FIGURE 2.20-2. Flight Posture Decision Calling Tree.

A number of secondary subroutines used in the flight posture decision are defined below.
These are not discussed in detail in this document, but are defined here as an aid to the
reader.

capupd Updates pilot’s knowledge of his location on a CAP leg.

mppud Updates pilot posture weapon parameters.

mppudi Performs initialization for subroutine prdexe.

pcode Production rules routine. May contain standard rules and/or user
defined special handlers.

prdexe Initializes and executes standard (level 0) production rules.

setlev Ensures subordinate decisions are performed when needed.

setspt Sets select pointer array for decision level.

svpred Predicts state vectors a time dt into the future.

thrlim Inhibits afterburner usage if an IR missile threat is perceived.

valsth Determines the hostile with the highest average offensive score.

valsti Initializes maneuver value components.

A number of utility subroutines are also used in the flight posture decision. These are not
discussed in detail in this document, but are defined below as an aid to the reader.

border Mathematical step function used in value functions.

cauchy Mathematical bell-shaped function used in value functions.

ckrngi Checks if a variable is within allowed range.

chralt Formats an alternative descriptor word into a string.

daltpt Deletes an alternative description.

MODSEL

AKSHN4 GCITACPKACTN

ASLC4I AEVA4I ASLCT4 APROJ4

ALT41

AEVAL4

TLOSS

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-8 Update: 12/31/97

DRAFT

delalt Deletes an alternative description.

dot Mathematical dot product function.

gcaprt Retrieves CAP route data into a common block.

getarm Returns information about the longest range weapon onboard specified
aircraft.

grdrc Retrieves radar characteristic data into a common block.

grdrs Retrieves radar status data into a common block.

indalg Returns the index of an alternative.

indg Finds an alternative descriptor word’s index.

indpk Packs arguments into an alternative descriptor word.

indupk Unpacks an alternative descriptor.

inlstv Retrieves a record stored in list memory in V-format.

inlsva Retrieves a portion of a list memory record.

inlsvd Retrieves a record stored in list memory in V-format and automatically
frees up list memory.

int_set Transfers a bit pattern from a real to an integer variable.

lbit Checks setting of specified bit in bit string.

match Checks if a specified element matches a list element.

movalt Copies an alternative descriptor.

nabort Error handler - prints error message and aborts program.

olistv Stores a record into list memory in V-format.

qguass Fast and accurate generator of gaussian variates.

ramp Mathematical ramp function.

rload Performs typeless data transfers between integer and real.

sepa Finds angle between two 3d vectors.

setfrm Sets up the friendly and hostile formation data structures.

srch Binary search of a real, ascending array.

stri Converts a integer to a left-justified string.

tmstrt Restarts a simulation timer (used for diagnostic profiling).

xmag Finds magnitude of a 3d vector.

xmit Copies data from one array to another.

xmitb Copies one array to another in reverse order.

vsub Performs 3-vector subtraction.

The principal data structures (common blocks) involved in the flight posture decision are
described below.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-9 BRAWLER

DRAFT

/altern/ Holds parameters used in selecting alternatives.

/althld/ Holds the currently selected decision alternative.

/altlst/ Holds information about alternative descriptors.

/decord/ Specifies decision level hierarchy.

/mind2/ Holds value elements for each pilot.

/mind3/ Holds the pilot’s assessment of relationships with other entities.

/mind4/ Holds mental model situational variables.

/mind5/ Holds values of assessed situational risks and expected kills.

Subroutine modsel is the executive that handles most of the flight leader and pilot decision-
making functions. Specifically, it controls the flight leader posture and tactics decisions,
the pilot posture decisions, the maneuver decision, and the weapon firing decision.

The logic of subroutine modsel consists primarily of deciding what decision level next
requires a decision, and then calling pkactn and akshnN, (where N is a numeric decision
level) to make and to implement the decision at that level. N = 4 for the flight posture
decision. Some special conditions, such as whether the conscious entity makes a decision
of a particular type (is he a flight leader?) are explicitly considered. The declev subroutine
handles decision requirements caused externally or by the time interval since the last
decision at this level by this pilot. In addition, modsel performs initialization functions by
calling valsti and svpred. Before making decisions, subroutine prdexe is called to allow
production rule biasing of the pilot's decisions when specified by the user.

Subroutine pkactn is the true decision executive at a given decision level. It first enters a
loop that calls subroutines aslct, aproj, and aeval (these are generic subroutine names;
actual entry names are passed as arguments to pkactn). These subroutines generate,
project, and evaluate the alternative. The first pass through the loop will only consider
those alternatives biased in production rules. The second pass considers all allowed
alternatives if the first pass generates nothing. Execution of the second pass can be
inhibited by the user by setting an operational mode array element, ouemod(19), in the
SCNRIO input data file.

A major secondary function of pkactn is to integrate the biases of the production rule
system with the value system. There is also a fair amount of additional code but it is almost
entirely related to maintaining a list of the best-scoring alternatives. There are two reasons
for this. First, when debugging; it is often useful to see which alternatives were almost
picked. A secondary function is to permit the addition of small random changes to the
value scores of the alternatives. This permits the simulation of a degraded pilot decision-
making capability, as when a pilot is under extreme stress. Pointers to the best alternatives
are kept in the array locval, and their value scores in array altval. When only one
alternative is generated for consideration, pkactn bypasses the scoring mechanism and
assigns a score in altval for that alternative.

When pkactn returns, it will have placed the description of the selected alternative in the
/althld/ common block, for use by the akshn routine.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-10 Update: 12/31/97

DRAFT

This section describes the organization of the generic alternative generation, projection,
and evaluation routines called by pkactn. The actual names of the subroutines are formed
by appending a suffix to the generic names indicating the decision level (= 4 for the flight
posture decision, which produces aslct4, aproj4, aeval4, akshn4). In addition, the
subroutines that generate individual alternatives, which all begin with ‘alt’, have a second
suffix that indicates the index of that alternative within the alternative set, i.e., alt41, alt42,
etc. Occasionally, a third suffix is used to further subdivide alternatives.

The purpose of the aslct routine is to generate a different alternative each time it is called,
or return a flag indicating that the available set of alternatives has been exhausted. Because
the set of alternatives considered occasionally changes as the Brawler model is developed,
it is not sufficient to label each alternative by a simple numerical index; such a system
would greatly reduce the flexibility available for adding new alternatives. Instead,
alternatives are labeled with a hierarchical notation consisting of four indexes, referred to
as the index set (ilevel, kalt, icall, lcall). The outermost variable ilevel denotes the decision
level for which the alternative is a course of action (4 for the flight posture decision). Kalt
denotes the most general kind of alternative. The variable icall is used to further
differentiate alternatives when several have the same ilevel and kalt values. The variable
lcall is used in those cases where a breakdown beyond the icall level is required. It is
currently used only in the specification of flight tactics.

aslctN (N corresponds to ilevel) uses the kalt index from the index set to break up the
alternative enumeration into more easily manageable parts. For each kalt value, each call
to aslctN causes it to call an altNK subroutine (N=ilevel, K=kalt) until the latter returns
more = .false., indicating exhaustion of alternatives. The aslct routine is responsible for
setting icall to zero prior to the first time each alt routine is called (for each consciousness
event). This serves to trigger internal initialization by the alt routine. The alt routine
returns the icall value of the generated alternative.

The aprojN subroutine is used to project or predict the consequences of adopting an
alternative without putting a value on the consequence. For those decisions that are not
actually value-driven, the aprojN subroutine is a dummy.

The aevalN subroutine places a value on the predicted consequence of a candidate
alternative. The akshnN subroutine is used to actually implement the action that pkactn has
selected. This implementation may include altering the value parameters of a conscious
pilot in order to influence lower level decisions.

In addition to the above decision routines, there are also initialization entry points to the
aslctN and aevalN subroutines. Actual subroutine aslctN has initialization entry aslcNi
and aevalN has entry aevaNi. The aslcNi entry is responsible for setting kalt=1 and icall=0
so that the first call to aslctN will function properly. Other action is optional and
specialized to the nature of the particular decision level. The aevaNi entry either performs
specialized processing, or is a dummy entry point.

Subroutine MODSEL

Subroutine modsel is the executive subroutine of the entire pilot decision process of which
the FPDFE is included. Figure 2.20-3 is the functional flow diagram which describes the

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-11 BRAWLER

DRAFT

logic used to implement the portion of modsel relevant to implementing the flight posture
decision. The blocks are numbered for ease of reference in the following discussion.

Block 1: Value statistics used for the maneuver decision are initialized with a call to
subroutine valsti.

Block 2: Test if missile mode = 2, ready to fire.

Block 3: If a missile is ready to fire set the projection interval tproj3, used to project other
aircraft in the simulation, to 2 seconds.

Block 4: If a missile is not ready to fire find the minimum range rngmin to the closer of
either a hostile aircraft or hostile missile and then...... The availability of guns is
determined from the weapons stores list.

Block 5: compute tproj3 as a ramp function of rngmin.

Block 6: Perform a constant acceleration projection of all other aircraft tproj3 seconds
into the future using subroutine svpred.

Block 7: Retrieve the current aircraft’s radar characteristic and status variables using
accessor subroutines grdrc and grdrs respectively.

Block 8: Initialize all alternative consideration flags to false.

Block 9: Set mental model index ppmiac with subroutine entry mppudi prior to ensure that
it references the correct target aircraft.

Block 10: Execute the routine (level 0) production rules with a call to subroutine prdexe.

Block 11: Initialize the production rule fire control range variable pr_ctrl_rng to 10
nautical miles.

Block 12: Execute the fire control threshold production rule handler with a call to
subroutine pcode(15).

Block 13: Test if the current mission is a CAP station mission. If it is not then skip the
CAP mission update logic (skip to block 24).

Block 14: If a CAP station mission unpack the tactics decision alternative descriptor altd1
with a call to subroutine indupk.

Block 15: Test if the tactics alternative is a GCI tactic.

Block 16: If the tactic alternative is not a GCI tactic perform a CAP mission update by
retrieving the CAP route via a call to subroutine gcarpt and then.......

Block 17: updating the pilot’s knowledge of his location on the route with a call to
subroutine capupd.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-12 Update: 12/31/97

DRAFT

Block 18: If the tactic alternative is a GCI tactic test if it is a GCI vector tactic. If it is then
skip the CAP mission update logic (skip to block 24).

Block 19: If the GCI tactic is not a vector tactic test if it is a GCI drag tactic. If it is not
then.......

Block 20: abort the program with a call to subroutine nabort since it is an unknown
GCI tactic.

Block 21: If the GCI tactic is a drag tactic test if the desired speed set by the GCI is non-
zero. If non-zero then skip the CAP mission update logic (skip to block 24).

Block 22: If the GCI tactic is not a drag tactic perform a CAP mission update by retrieving
the CAP route via a call to gcaprt and then......

Block 23: updating the pilot’s knowledge of his location on the route with a call to
subroutine capupd.

Block 24: Update the pilot posture weapon parameters with a call to subroutine mppud.

Block 25: Test if projection interval tproj3 is not equal to 2 and if the missile mode is
equal to 2 (ready to fire).

Block 26: If the conditions of block 25 are met set tproj3 to 2 and then......

Block 27: project all other aircraft in the simulation ahead by tproj3 seconds with a call
to subroutine svpred.

Block 28: Set the alternative format indicator iactn to 0 indicating no format.

Block 29: A call to subroutine thrlim limits the throttle if an IR missile threat is perceived.

Block 30: Set loop counter jlevel to 0.

Block 31: Test if jlevel = nlevel, the number of decision levels. This is the starting point
of the decision loop which loops over the various decisions to be made in this routine.

Block 32: If jlevel = nlevel, invoke the target conflict production rules handler with a call
to subroutine pcode(7) and then return control to the calling routine conevt.

Block 33: If jlevel is not equal (is less than) nlevel increment jlevel.

Block 34: Set the decision level ilevel to the value of the decision level order array at index
jlevel, decord(jlevel).

Block 35: Set the alternative select pointer for decision level ilevel with a call to
subroutine setspt.

Block 36: Set the alternative format indicator to 0 indicating no format.

Block 37: Test if all timers are active.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-13 BRAWLER

DRAFT

Block 38: If all timers are active reactivate the clock with a call to subroutine tmstrt.

Block 39: A computed goto statement acts as a switch dependent upon ilevel to select the
decision to be processed. If ilevel is 4 then the algorithm branches to the flight posture
decision process. If it is another value then some other decision process is performed. The
routine will visit each decision process in the switch statement before the routine exits.

Block 40: Test if the decision maker is a surface to air missile (SAM) site. If yes, then
control branches to block 46.

Block 41: If the entity is not a SAM site (is an aircraft) test if the current aircraft is the
flight leader and that all the prerequisites are satisfied for making the flight posture
decision. If not then control branches to block 45.

Block 42: If the block 41 conditions are met call subroutine pkactn to make the flight
posture alternative selection.

Block 43: Test if iactn is not equal to 0. A nonzero value indicates that some alternative
format is indicated by iactn.

Block 44: If iactn is not 0 implement the selected alternative with a call to subroutine
akshn4.

Block 45: Change the flight posture decision for any GCI messages with a call to
subroutine gcitac.

Block 46: Test if all timers are active. If not then branch back to the start of the decision
process at block 31.

Block 47: If all timers are active stop them with a call to subroutine tmstop. Then branch
back to the start of the decision process at block 31.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-14 Update: 12/31/97

DRAFT

FIGURE 2.20-3. MODSEL Functional Flow Diagram (Page 1 of 4).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-15 BRAWLER

DRAFT

FIGURE 2.20-3. MODSEL Functional Flow Diagram (Page 2 of 4).

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-16 Update: 12/31/97

DRAFT

FIGURE 2.20-3. MODSEL Functional Flow Diagram (Page 3 of 4).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-17 BRAWLER

DRAFT

FIGURE 2.20-3. MODSEL Functional Flow Diagram (Page 4 of 4).

Subroutine PKACTN

Subroutine pkactn is the executive procedure for value-driven decision selections. Figure
2.20-4 is the functional flow diagram which describes the logic used to implement pkactn.
The blocks are numbered for ease of reference in the following discussion.

Note that five subroutine names are passed in as arguments to pkactn, which is a
FORTRAN feature not commonly encountered. This means that flight posture specific
routines referred to in the following discussion, such as aslct4, appear in the actual code in
pkactn as generic names, such as aslct.

Block 1: Setting altpas to 1 tells the alternative generation routine aslct4 to not consider
unbiased (by production rules) alternatives.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-18 Update: 12/31/97

DRAFT

Block 2: Subroutine setlev ensures that all subordinate decisions will be reexamined after
making the flight posture decision.

Block 3: The flight posture alternative generation procedure is initialized by a call to entry
aslc4i of subroutine aslct4.

Block 4: The flight posture alternative candidate evaluation procedure is initialized by a
call to entry aeva4i of subroutine aeval4.

Block 5: The bias strength is computed as a function of the production rule bias strength
variable biastr.

Block 6: The flag gnrate is set true which tells the algorithm to generate an alternative.

Block 7: Test flag gnrate to determine if an alternative is to be generated.

Block 8: If gnrate is true, an alternative is generated by a call to subroutine aslct4.

Block 9: If gnrate is false, the second alternative generated is restored into array althld.

Block 10: Test on whether there are more alternatives to consider.

Block 11: If there are no more alternatives to consider, test if only one alternative has been
generated.

Block 12: If only one alternative was generated, store it in the althld array.

Block 13: Initialize the alternative value variables altvlx and altvly to 20.

Block 14: If there are more alternatives to consider (from block 10 test), test if only one
alternative was generated.

Block 15: If only one alternative was generated and there are more to generate, save the
first alternative in a temporary location.

Block 16: If there was not one alternative generated, test if two alternatives were
generated.

Block 17: If two alternatives were generated, then save the second one in a temporary
location and.....

Block 18: restore the first alternative generated in array althld.

Block 19: Set gnrate to false.

Block 20: If the number of alternatives generated is not one or two then set gnrate to true.

Block 21: Call subroutine aproj4 to project the candidate flight posture alternative.

Block 22: Test if the alternative is a duplicate of a previously considered alternative and
if it is not positively biased by the production rules. If these conditions are both true, then

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-19 BRAWLER

DRAFT

this alternative is effectively canceled (by not continuing the processing of it) and the
algorithm returns to block 7 to decide whether to generate another alternative.

Block 23: If the test of block 22 fails, then the alternative candidate is still valid and it is
evaluated by subroutine aeval4 which assigns the alternative a value altvly.

Block 24: Test if the production rule bias strength = 0.

Block 25: If the production rule bias strength is not 0, then a gaussian variate is generated
by function qgauss which is then used to......

Block 26: compute the alternative’s value altvlx along with the bias strength.

Block 27: If the production rule bias strength is 0 then a gaussian variate is generated by
function qgauss which is then used to......

Block 28: compute the alternative’s value altvlx without the bias strength.

Block 29: Test if the alternative value altvlx is above the minimum cutoff value vcut.

Block 30: If the alternative value is below the cutoff then delete the alternative by a call
to subroutine delalt.

Block 31: If the alternative value is at or above the cutoff then test if the number of
alternatives evaluated, nalt, is not equal to 0.

Block 32: If nalt is 0, then set flag smalst to false and flag largst to true which indicates
that the current alternative candidate is the highest valued alternative (since it is the only
alternative evaluated).

Block 33: If nalt is not 0, then there is more than one alternative generated, and flags
smalst and largst are logical functions of altvlx and altval.

Block 34: Test if nalt equals the maximum allowed number of evaluated alternatives.

Block 35: If nalt is at maximum, test the smalst flag.

Block 36: If smalst is true, then the current alternative is the lowest valued one and is to
be deleted by calling subroutine delalt.

Block 37: If smalst is false, nalt is decremented.......

Block 38: and the first alternative on the list is deleted by a call to daltpt.

Block 39: If nalts is not equal to the maximum allowed (from block 34), store the current
alternative in list temporary list memory with a call to subroutine olistv.

Block 40: Test the smalst flag.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-20 Update: 12/31/97

DRAFT

Block 41: If largst is false and smalst was also false, then the current alternative is
between the lowest and highest scoring so far and is inserted in order into the list of
candidates.

Block 42: nalt is incremented for the alternative added in block 41.

Block 43: If largst is true then the current alternative is the highest scoring to this point.
nalt is incremented and........

Block 44: the alternative is inserted into the ordered list of candidate alternatives.

Block 45: Test if the current alternative score altvlx (which is the highest scoring
alternative) is not negative.

Block 46: If altvlx is negative, calculate the threshold score vcut as altvlx/vcutf.

Block 47: If altvlx is positive, calculate the threshold score vcut as altvlx*vcutf.

Block 48: This is a loop statement for looping over the alternative score list altval(i) in
ascending order of scores (since it is an ascending-ordered list). Blocks 49 and 50 are
included in the loop.

Block 49: Component of the loop sequence of block 48. Tests if the currently indexed
score altval(i) is less than the threshold vcut.

Block 50: Component of the loop sequence of block 48. Given that the currently indexed
alternative altval(i) is below the threshold vcut, delete the alternative by a call to subroutine
daltpt.

Block 51: Given that the currently indexed alternative was above the threshold vcut, test
if the final value of index i of the previous loop is greater than 1 which tests to see if one
or more alternatives were deleted from the list.

Block 52: If one or more alternative were deleted, compress the list.

Block 53: If no alternatives were deleted from the list, test to see if there are more
alternatives to be generated. If yes then go back to block 7 to start the process of generating
another alternative.

Block 54: If are no more alternatives to be generated test if the number of alternatives
evaluated, nalt, is above zero.

Block 55: If nalt is above zero, test if only positively biased alternatives are to be
considered and if routine aslct4 skipped unbiased alternatives during this pass through the
list of alternatives (altpas = 1).

Block 56: If the test above (block 55) is true then altpas is set to 2, meaning unbiased
alternatives will not be skipped, and return to block 2 to process unbiased alternatives. The
effect of this is that if the first pass through the alternatives only considered biased
alternatives and none were generated, then a second pass must be made that looks at all
alternatives.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-21 BRAWLER

DRAFT

Block 57: If the conditions of block 55 are not met then iactn, the alternative format
indicator in common block /althld/, is set to 0 (indicating no format) and the routine returns
to the calling routine modsel.

Block 58: If the number of alternatives evaluated, nalt, is below 0, test if the decision level
(ilevel) is at level 3.

Block 59: If the current decision level is 3, compute the average of each maneuver value
component with a call to subroutine valst.

Block 60: This is a loop statement for looping over all alternatives which have been
evaluated (nalt alternatives). Blocks 61 through 63 are included in the loop.

Block 61: This is a component of the block 60 loop. Test if the currently indexed
alternative is the last on the list and therefore highest valued one.

Block 62: This is a component of the block 60 loop. If the current indexed alternative is
not the highest valued one, delete it from the list with a call to subroutine daltpt.

Block 63: Test if there are more alternatives for the loop to operate on. If yes, return to
the top of the loop.

Block 64: If there are no more alternatives for the loop to operate on, copy the remaining
alternative (highest valued) on the candidate list from temporary storage to the althld array
in common block /althld/ with a call to subroutine inlsvd.

Block 65: Also store the highest valued alternative in array cactn of common block
/mind2/ then return to the calling routine modsel.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-22 Update: 12/31/97

DRAFT

FIGURE 2.20-4. PKACTN Functional Flow Diagram (Page 1 of 5).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-23 BRAWLER

DRAFT

FIGURE 2.20-4. PKACTN Functional Flow Diagram (Page 2 of 5).

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-24 Update: 12/31/97

DRAFT

FIGURE 2.20-4. PKACTN Functional Flow Diagram (Page 3 of 5).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-25 BRAWLER

DRAFT

FIGURE 2.20-4. PKACTN Functional Flow Diagram (Page 4 of 5).

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-26 Update: 12/31/97

DRAFT

FIGURE 2.20-4. PKACTN Functional Flow Diagram (Page 5 of 5).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-27 BRAWLER

DRAFT

Subroutine ASLC4I

Subroutine (entry) aslc4i initializes the alternative selection process. Figure 2.20-5 is the
functional flow diagram which describes the logic used to implement ascl4i. The blocks
are numbered for ease of reference in the following discussion.

Block 1: Set the alternative kind indicator kalt to 1, the first alternative kind.

Block 2: Set the alternative kind subtype indicator icall to 0, the first subtype.

Block 3: Set the “no bad guy aircraft” indicator to false.

Block 4: Beginning of a loop statement over all hostile aircraft (nbg, which stands for
“number of bad guys”). The loop encompasses blocks 4 through 6.

Block 5: Test if the currently indexed hostile entity is an aircraft. If yes, then branch out
of the loop to block 8.

Block 6: If more hostile entities, go back to the top of the loop, otherwise exit the loop.

Block 7: If the loop terminates due to no more hostiles, then this statement is executed
next which sets the “no bad guy aircraft” indicator to true.

Block 8: Test if there are any previous communication orders by seeing if old order
pointer oldop is non-zero.

Block 9: If no previous communication orders exist, set the old order pointer oordp to 0,
and the old order time variables oordt and oldotm to a large negative value (-1000).

Block 10: If a previous communication order does exist set the old order variables in
blocks 10 though 12. Set oordp to the value of the order pointer oldop and set oordt to the
value of previous order time oldotm.

Block 11: Copy alternative descriptor cactn(1,1) to ocact1(1) with a call to subroutine
movalt.

Block 12: Copy alternative descriptor cactn(1,4) to ocact4(1) with a call to subroutine
movalt.

Block 13: Test if any previous tactics orders exist by seeing if old tactics pointer otacp is
non-zero.

Block 14: If an old tactics order exists store it into array opplan using subroutine inlstv.

Block 15: Set the old tactics order pointer to -1.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-28 Update: 12/31/97

DRAFT

FIGURE 2.20-5. ASLC4I Functional Flow Diagram.

START

1
KALT = 1

2
ICALL = 0

3
NO_BAD_GUY_AC = False

4
Loop Over

Number of Bad Guys
NBG

5
Is

Bad Guy
an Aircraft

?

6
More

?

7
NO_BAD_GUY_AC = True

8
Any

Previous
Orders

?

10
OORDP = OLDOP

OORDP = OLDOTM

9
OORDP = 0
OORDT = -1000
OLDOTM = -1000

11
Copy Alternative

CACTN(1,1) to OCACT1 (1)
(MOVALT)

12
Copy Alternative

CACTN(1,4) to OCACT4(1)
(MOVALT)

13
Any

Previous
Tactics
Orders

?

RETURN

14
Store Old Tactic

into OPPLAN
(INLSTV)

Yes

15
OTACP = -1

No

Yes

No

Yes

Yes

No

No

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-29 BRAWLER

DRAFT

Subroutine AEVA4I

Subroutine entry aeva4i performs initialization for the alternative evaluation procedure
which represents the level of satisfaction of the weapon envelope. Figure 2.20-6 is the
functional flow diagram which describes the logic used to implement aeva4i. The blocks
are numbered for ease of reference in the following discussion.

Block 1: Determine the longest range weapon available to me with a call to subroutine
getarm.

Block 2: Check that the weapon found in block 1 is a legitimate type with a call to
subroutine ckrngi.

Block 3: TestDecision on if the longest range weapon kndbst = 0, which indicates a gun.

Block 4: If kndbst was 0 then set kndbst to 4 which also indicates a gun.

Block 5: Calculate maximum weapon range rnguse as the larger of the nominal weapon
range rngmax and 4 nautical miles.

Block 6: Initialize psavg, the average probability of being seen, vftot, the total friendly
value, and risks, the expected flight value lost if an engagement ensues, all to zero.

Block 7: Loop statement for looping over aircraft in my flight to assess risk factors and
compute psavg. Blocks 7 through 12 are included in the loop.

Block 8: Find the aircraft index iac from list lmyflt for the current loop index.

Block 9: Increase vftot by the intrinsic value of aircraft iac

Block 10: Increase psavg as a function of pseen(iac), the estimated probability that a
friendly aircraft has been detected.

Block 11: Increase risks as a function of the intrinsic value of aircraft iac and the
probability that aircraft iac will survive.

Block 12: Test if more aircraft in my flight. If yes, branch back to the top of the loop
(block 7).

Block 13: Divide psavg by the number of aircraft in my flight to get the final value of
psavg.

Block 14: Test if any bad guy aircraft exist. If no, branch down to block 35. If yes, do
blocks 15 through 34.

Block 15: Set up friendly and hostile formation data structures with a call to subroutine
setfrm.

Block 16: Compute the position vector dx from the center of the friendly formation to the
center of the hostile formation with a call to utility subroutine vsub.

Block 17: Compute the range to the hostile formation (range) from dx using function
xmag.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-30 Update: 12/31/97

DRAFT

Block 18: Compute the velocity vector difference dv between the friendly and hostile
formation group velocity vectors using subroutine vsub.

Block 19: Compute the relative speed spdtgt between the hostile and friendly formations
from dv using function xmag.

Block 20: Compute the range rate, rdot, by taking the dot product of dx and dv divided by
range.

Block 21: Compute the angle theta between dx and the hostile formation group velocity
vector minus 90 degrees using function sepa. This measures how close the hostile
formation velocity is to perpendicular to the line of sight to the hostiles.

Block 22: Compute the effective weapon range rngeff as a function of range, theta, rdot,
and spdtgt.

Block 23: Compute range factor rngfac as a function of rnguse and rngeff.

Block 24: Compute riska, the a priori expected risk, as a function of vftot and a function
of fratio, the force ratio.

Block 25: Initialize to zero kills, the expected hostile value killed if an engagement ensues
and vhtot, the total hostile value.

Block 26: Loop statement for looping over bad guy aircraft to assess kill factors. Blocks
26 through 30 are included in the loop.

Block 27: Find bad guy index iac from list listh indexed by the current loop index.

Block 28: Increase vhtot by the value of engaging aircraft iac.

Block 29: Increase kills by the probability aircraft iac will survive and the value of
engaging aircraft iac.

Block 30: Test of more bad guys. If yes, branch back to the top of the loop. If no, continue
execution at the next block.

Block 31: Test if rngeff is greater than or equal to rngwpn. If no, branch to block 33. If
yes, continue execution at the next block.

Block 32: If rngwpn is smaller than rngeff calculate psavg as a function of kills, rngeff,
rngwpn, and detr0, the nominal detection range by hostiles.

Block 33: Compute kills as a function of the current value of kills, psavg, and vhtot.

Block 34: Compute killa, the a priori expected kill value as a function of vhtot and a
cauchy function of the inverse of the force ratio.

Block 35: If no bad guys exist, initialize rngeff to xlarge (the largest real number
attainable by the system), rngfac to 1, and risks, kills, riska, killa, and vhtot all to 0.

Block 36: Compute rngbon as one-tenth the sum of riska and killa.

Block 37: Unpack alternative descriptor altd1 using subroutine indupk then return control
to the calling routine pkactn.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-31 BRAWLER

DRAFT

FIGURE 2.20-6. AEVA4I Functional Flow Diagram (Page 1 of 3).

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-32 Update: 12/31/97

DRAFT

FIGURE 2.20-6. AEVA4I Functional Flow Diagram (Page 2 of 3).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-33 BRAWLER

DRAFT

FIGURE 2.20-6. AEVA4I Functional Flow Diagram (Page 3 of 3).

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-34 Update: 12/31/97

DRAFT

Subroutine ASLCT4

Subroutine aslct4 generates a candidate flight posture alternative. Figure 2.20-7 is the
functional flow diagram which describes the logic used to implement aslct4. The blocks
are numbered for ease of reference in the following discussion.

Block 1: Check kalt range (between 1 and 8 inclusive) with subroutine chkrngi to ensure
a valid alternative kind is to be processed.

Block 2: If kalt is 1 (is a mission posture alternative kind), then continue processing at
block 3 to generate a mission flight posture alternative. Otherwise, continue at block 10 to
process any of the other alternative kinds which are specified by kalt and icall.

Block 3: Generate the mission flight posture alternative with subroutine alt41.

Block 4: Test if an alternative was generated. If yes, continue at block 5. If no, continue
at block 6.

Block 5: Set indicator ‘more’ to true to indicate to the calling routine (pkactn) that more
alternatives are to be generated and then return to the calling routine (pkactn).

Block 6: Increment kalt by 1 to process the next alternative kind.

Block 7: Test if kalt = 7 (SAM site alternative kind). If not, continue at block 9. If yes,
then continue at block 8.

Block 8: If a SAM site alternative kind, set ‘more’ to false indicating no more alternatives
to process and the return to the calling routine pkactn.

Block 9: If the kind is not a SAM site, then set icall, the kind subtype, to 0 and branch
back to block 2 to continue processing the next alternative.

Block 10: Begin processing of other (any but mission flight posture) alternative kinds by
incrementing icall by 1 to the next subtype.

Block 11: Test if icall equals 2. If yes, branch to block 6. If no, continue at block 12.

Block 12: If icall is not 2, test if there are no bad guys and that kalt is not equal to 6, return
to base alternative kind. If true, then branch to block 6. If false, continue at block 13.

Block 13: Get the index ind of the alternative using subroutine indalg.

Block 14: Test if alternative ind is to be considered by testing the value stored in sptr(ind).
If not, return to block 11.

Block 15: Set iactn, format indicator, to 8 indicating flight posture format.

Block 16: Set the alternative length lenalt to the value stored in lactn(iactn).

Block 17: Pack the alternative defined by kalt and icall into descriptor word altdsc using
subroutine indpk.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-35 BRAWLER

DRAFT

Block 18: Set alternative description array indices 4, 5, and 6 with 0, fltp (current flight
posture indicator), and kalt respectively using subroutine rload.

Block 19: Test if kalt is equal to 4 (disengage) or 6 (return to base). If yes, then continue
with block 20. If no, then continue at block 21.

Block 20: If a disengage or return to base alternative kind, set the ignore GCI vector flag
igngcv to true.

Block 21: Otherwise set the igngcv flag to false.

Block 22: Set the ‘more’ flag to true indicating there are more alternatives to process, then
return to the calling program pkactn.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-36 Update: 12/31/97

DRAFT

FIGURE 2.20-7. ASLCT4 Functional Flow Diagram.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-37 BRAWLER

DRAFT

Subroutine APROJ4

Subroutine aproj4 projects the candidate alternative generated by aslct4 in order to predict
the likely result of adopting the candidate flight posture alternative. Figure 2.20-8 is the
functional flow diagram which describes the logic used to implement aproj4. The blocks
are numbered for ease of reference in the following discussion.

Block 1: Retrieve the alternative kind kalt from the althld description array using function
int_set.

Block 2: Ensure kind is valid (kalt within range) with a call to subroutine chkrngi.

Block 3: A computed goto on the value of kalt is used to select the appropriate alternative
kind projection logic.

Block 4: Blocks 4 through 7 represent the mission alternative kind projection logic. Set
kill, the weighted expected value of hostiles being lost, to 0.

Block 5: Set risk, the weighted expected value of friendlies being lost to 0.5*risks, the
unweighted value.

Block 6: fmisn is computed as a border function of vftot (total friendly value), ngg
(number of good guys), and risk. The result of the border function is then divided by 0.9.

Block 7: xfuel (predicted excess fuel above bingo level) and dteng (predicted engagement
time) are set to 0. Then aproj4 returns to the calling routine pkactn.

Block 8: Blocks 8 through 12 represent the attack alternative kind projection logic. Set
wta, the weight for a priori factors, to 0.5.

Block 9: Set foff and fdef, the weight for offensive and defensive situational factors
respectively, to 1.

Block 10: Evaluate the total losses of friendlies and hostiles using subroutine tloss.

Block 11: fmisn is computed as a border function of vftot (total friendly value), ngg
(number of good guys), and risk. The result of the border function is then weighted by 0.5.

Block 12: xfuel (predicted excess fuel above bingo level) and dteng (predicted
engagement time) are set to 0. Then aproj4 returns to the calling routine pkactn.

Block 13: Blocks 13 through 17 represent the evade with intent to re-engage alternative
kind projection logic. Set wta, the weight for a priori factors, to 0.5.

Block 14: Set foff and fdef, the weight for offensive and defensive situational factors
respectively, to 0.5.

Block 15: Evaluate the total losses of friendlies and hostiles using subroutine tloss.

Block 16: fmisn is computed as a border function of vftot (total friendly value), ngg
(number of good guys), and risk. The result of the border function is then weighted by 0.5.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-38 Update: 12/31/97

DRAFT

Block 17: xfuel (predicted excess fuel above bingo level) and dteng (predicted
engagement time) are set to 0. Then aproj4 returns to the calling routine pkactn.

Block 18: Blocks 18 through 22 represent the disengage alternative kind projection logic.
Set wta, the weight for a priori factors, to 0.

Block 19: Set foff and fdef, the weight for offensive and defensive situational factors
respectively, to 0.3.

Block 20: Evaluate the total losses of friendlies and hostiles using subroutine tloss.

Block 21: fmisn is computed as a border function of vftot (total friendly value), ngg
(number of good guys), and risk. The result of the border function is then weighted by 0.5.

Block 22: xfuel (predicted excess fuel above bingo level) and dteng (predicted
engagement time) are set to 0. Then aproj4 returns to the calling routine pkactn.

Block 23: Blocks 23 through 27 represent the close from long range alternative kind
projection logic. Set wta, the weight for a priori factors, to 0.75.

Block 24: Set foff and fdef, the weight for offensive and defensive situational factors
respectively, to 1.0.

Block 25: Evaluate the total losses of friendlies and hostiles using subroutine tloss.

Block 26: fmisn is computed as a border function of vftot (total friendly value), ngg
(number of good guys), and risk. The result of the border function is then weighted by 0.75.

Block 27: xfuel (predicted excess fuel above bingo level) and dteng (predicted
engagement time) are set to 0. Then aproj4 returns to the calling routine pkactn.

Block 28: Blocks 28 through 29 represent the return to base alternative kind projection
logic. Set risk to 10*vftot.

Block 29: Set kill, fmisn, xfuel, and dteng all to 0. Then aproj4 returns to the calling
routine pkactn.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-39 BRAWLER

DRAFT

FIGURE 2.20-8. APROJ4 Functional Flow Diagram.

Subroutine AEVAL4

Subroutine aeval4 evaluates the candidate flight posture alternative. Figure 2.20-9 is the
functional flow diagram which describes the logic used to implement aeval4. The blocks
are numbered for ease of reference in the following discussion.

Block 1: Retrieve the alternative kind kalt from the althld description array using function
int_set.

Block 2: Ensure kind is valid (kalt within range) with a call to subroutine chkrngi.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-40 Update: 12/31/97

DRAFT

Block 3: Compute altvlx, an initial value for the candidate alternative. fmisn (ability to
complete mission), xfuel (predicted excess fuel above bingo level), and dteng (predicted
engagement time) are multiplied by their respective importance multipliers and summed.

Block 4: The net kill value netkil is computed as the flight leader’s aggressiveness factor
aggfac times the expected friendly loss value minus the expected hostile loss value.

Block 5: A computed goto on the value of kalt is used to select the appropriate alternative
kind projection logic.

Block 6: Blocks 6 through 14 are performed if the alternative kind is perform mission or
return to base. altvlx is computed as the sum of itself, netkil, and rngbon, the range bonus.
These are range-independent postures and receive the full range bonus.

Block 7: Invoke subroutine indupk to unpack the candidate alternative descriptor altdsc.

Block 8: Test if a GCI drag tactic has been directed. If yes, continue at block 9. If no,
continue at block 11.

Block 9: Test if the candidate alternative is GCI mission posture. If yes, then continue at
block 10. If no, then branch to block 19.

Block 10: Augment the current value of altvlx with the addition of gcnetk, the GCI
vectoring value.

Block 11: TestDecision on if there are any known hostile aircraft. If no, branch to block
19. If yes, continue at block 12.

Block 12: TestDecision on if the candidate alternative is a GCI mission. If no, branch to
block 19. If yes, continue at block 13.

Block 13: Compute the GCI importance factor gcifac as a border function of message
interval gdtvmg and amount of time since the last GCI vectoring message received (time -
tmls_gci),

Block 14: Augment the current value of altvlx with the addition of the GCI value
gcifac*gcnetk.

Block 15: This block is executed for alternative kinds attack immediate, evade/reengage,
and disengage. Augment the current value of altvlx with the addition of netkil and rngbon
(the range bonus) times 1-rngfac. These are close-in postures which get rewarded with a
larger range bonus for smaller values of rngfac, which approaches zero as the range
decreases.

Block 16: Blocks 16 through 18 are executed for the BVR attack alternative kind. The
weighted range bonus is small since rngfac is large for long ranges. Test if a GCI drag
tactic alternative is specified. If yes, execute block 17, otherwise execute block 18.

Block 17: If a GCI drag tactic augment altvlx with the addition of netkil and the weighted
range bonus rngbon*rngfac.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-41 BRAWLER

DRAFT

Block 18: If not a GCI drag tactic augment altvlx with the addition of gcnetk (GCI
vectoring value), netkil, and the weighted range bonus rngbon*rngfac.

Block 19: Test if the candidate alternative is the currently active alternative posture. If
yes, continue at block 20. Otherwise, return control to the calling routine pkactn.

Block 20: Apply hysteresis to the current candidate. Test if altvlx is above 0. If yes,
compute altvlx as in block 22, otherwise as is block 21.

Block 21: Multiply the current value of altvlx by the hysteresis factor (1+hyst) where hyst
= 0.2. This is the final value of altvlx. Then return to the calling routine pkactn.

Block 22: Divide the current value of altvlx by the hysteresis factor (1+hyst) where hyst =
0.2. This is the final value of altvlx. Then return to the calling routine pkactn.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-42 Update: 12/31/97

DRAFT

FIGURE 2.20-9. AEVAL4 Functional Flow Diagram.

START

1
Retrieve Kind KALT

(INT_SET)

2
Ensure KALT is

Valid (CHKRNGI)

3
ALTVLX = VMISN x FMISN + VFUEL

x XFUEL + VTIME x DTENG

4
NETKIL = KILL x AGGFAC - RISK

5
Go to
KALT

6
ALTVLX = ALTVLX +
NETKIL + RNGBON

7
Unpack ALTDSC

(INDUPK)

8
GCI

Drag Tactic
?

9
GCI

Mission
Posture

?

10
ALTVLX =
ALTVLX +
GCNETK

11
Any
Bad
Guys

?

12
GCI

Mission
Posture

?

13
Compute
GCIFAC

(BORDER)

14
Compute
ALTVLX

15
ALTVLX = ALTVLX +
NETKIL + RNGBON x

(1-RNGFAC)

16
GCI
Drag
Tactic

?

17
ALTVLX = ALTVLX +
NETKIL + RNGBON

x RNGFAC

18
ALTVLX = ALTVLX +
NETKIL + GCNETK +
RNGBON x RNGFAC

19
FLTP = KALT

?

20
ALTVLX > 0

?

21
ALTVLX = ALTVLX

 /(1+HYST)

22
ALTVLX = ALTVLX

x (1 + HYST)

RETURN

Yes

No

Yes

Yes No

No

No

Yes

YesNo

No

Yes

Yes

No

KALT = 1,6 KALT = 2,3,4 KALT = 5

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-43 BRAWLER

DRAFT

Subroutine AKSHN4

Subroutine akshn4 implements the chosen flight posture alternative by setting the mission,
offensive, and defensive multipliers. Figure 2.20-10 is the functional flow diagram which
describes the logic used to implement akshn4. The blocks are numbered for ease of
reference in the following discussion.

Block 1: The alternative kind is retrieved into nfltp from array althld with utility function
int_set.

Block 2: Ensure kind nfltp is valid (in range) with utility subroutine chkrngi.

Block 3: The value of nfltp is used in a computed goto to select the designated logic for
setting the multipliers.

Block 4: Blocks 4 through 8 set the multipliers for the mission posture alternative kind.
Block 4 unpacks alternative descriptor altd4 with utility subroutine indupk.

Block 5: Ensure kind subtype icall is valid (in range) with utility subroutine chkrngi.

Block 6: icall is used in a computed goto to select the logic for setting the multipliers. If
icall is 1 or 3 perform block 7. If icall is 2 perform block 8.

Block 7: Set the mission, offensive, and defensive multipliers to 1, 0.5*aggfac
(aggressiveness factor), and 0.5 respectively.

Block 8: Set the mission, offensive, and defensive multipliers to 1, aggfac (aggressiveness
factor), and 1 respectively.

Block 9: For the attack alternative, set the mission, offensive, and defensive multipliers to
0.1, aggfac (aggressiveness factor), and min[1,fratio] (fratio = force ratio) respectively.

Block 10: For the evade and re-attack alternative, set the mission, offensive, and defensive
multipliers to 0.1, max[0.5*aggfac,0.75], and 1 respectively.

Block 11: For the disengage alternative, set the mission, offensive, and defensive
multipliers to 0.5, max[0.25*aggfac,0. 5], and 1 respectively.

Block 12: For the close from long range alternative, set the mission, offensive, and
defensive multipliers to 0.1, aggfac, and 0.5 respectively.

Block 13: For the return to base alternative, set the mission, offensive, and defensive
multipliers to 0.1, max[0.5*aggfac,0.5], and 1 respectively.

Block 14: For the SAM site alternative (only executed for SAM sites), set the mission,
offensive, and defensive multipliers to 0.1, 1, and 1 respectively.

Block 15: For the follow GCI alternative, set the mission, offensive, and defensive
multipliers to 0.1, aggfac, and min[1.0, fratio], respectively.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-44 Update: 12/31/97

DRAFT

Block 16: After setting the multipliers project the alternative with a call to subroutine
aproj4.

Block 17: An if-elseif block is set up as a case selection on the ignore GCI vector flag
igngc4_flag. If igngc4_flag is 0 branch to block 21.

Block 18: If igngc4_flag is 1, set the ignore GCI vector indicator igngc4 to true.

Block 19: If igngc4_flag is 2 then set igngc4 to false.

Block 20: If igngc4_flag is 3 or over the program is aborted with a call to subroutine
nabort.

Block 21: Test igngc4. If true, perform block 20. If false, return control to the calling
routine modsel.

Block 22: Set tmls_gci(gc_vec), the last GCI vector message time, to -1000 indicating
there is no previous GCI vector message. Then return to the calling routine modsel.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-45 BRAWLER

DRAFT

FIGURE 2.20-10. AKSHN4 Functional Flow Diagram.

START

1
Retrieve Kind NFLTP

(INT_SET)

2
Ensure NFLTP is
Valid (CHKRNGI)

3
Go to

NFLTP

13
MSNMLT = .1
OFFMLT = MAX
(.5AGGFAC,.5)
DEFMLT = 1

12
MSNMLT = .1
OFFMLT =
AAGFAC
DEFMLT = .5

11
MSNMLT = .5
OFFMLT = MAX
(.25AGGFAC,.5)
DEFMLT = 1

10
MSNMLT = .1
OFFMLT = MAX
(.5AGGFAC,
.75)
DEFMLT =1

9
MSNMLT = .1
OFFMLT =
AGGFAC
DEFMLT =
MIN(1,FRATI0)

4
Unpack
ALTD4

(INDUPK)

5
Validate
Sybtype

(CHKRNGI)

7
MSNMLT = 1
OFFMLT=
.5AGGFAC
DEFMLT = .5

8
MSNMLT = 1
OFFMLT =
AGGFAC
DEFMLT = 1

6
 Go to
ICALL

16
Project

Alternative
(APROJ4)

17
Go to

IGNGC4_FLAG

18
IGNGC4 = TRUE

20
INVALID, ABORT

(NABORT)
19

IGNGC4 = FALSE

21
IGNGC4

?

22
TMLS_GCI(GC_VEC) = 1000

STOP

RETURN

0 1 2 3+

F

T

14
MSNMLT = .1
OFFMLT = 1
DEFMLT = 1

15
MSNMLT = .1
OFFMLT =
AGGFAC,
DEFAULT =
Min(1.,FRATIO)

NFLTP=1 NFLTP=2 NFLTP=3 NFLTP=4 NFLTP=5 NFLTP=6 NFLTP=7 NFLTP=8

ICALL = 1,3 ICALL = 2

IGNGC4_FLAG =

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-46 Update: 12/31/97

DRAFT

Subroutine GCITAC

Subroutine gcitac changes the flight posture decision for GCI orders. Figure 2.20-11 is the
functional flow diagram which describes the logic used to implement gcitac. The blocks
are numbered for ease of reference in the following discussion.

Block 1: Test if the ignore GCI message indicator igngc4 is true or false. If true, exit and
return control the calling routine modsel. If false, then continue at block 2.

Block 2: Test if the GCI tactic is ‘follow GCI’. If not, then exit and return control the
calling routine modsel. If it is, then continue at block 3.

Block 3: Save the current posture and tactic alternatives (altd4 and altd1) into local
variables.

Block 4: Begin constructing a GCI posture alternative descriptor by setting the format
indicator iactn to 8 (flight posture) and storage size lenalt to lactn(iactn).

Block 5: Store iactn and lenalt into alternative description array cactn by using utility
function rload.

Block 6: Unpack the current flight posture alternative descriptor altd4.

Block 7: Test if any there are any known hostile aircraft. If yes, perform blocks 11 through
13. If no, then perform blocks 8 through 10.

Block 8: Pack the GCI_MISSION alternative into posture alternative descriptor altd4
using function indpk.

Block 9: Find the alternative index ind4n using function indalg.

Block 10: Set new flight posture kind indicator nfltp to 1 (mission posture).

Block 11: Pack the FOLLOW_GCI alternative into posture alternative descriptor altd4
using function indpk.

Block 12: Find the alternative index ind4n using function indalg.

Block 13: Set new flight posture kind indicator nfltp to 8 (follow GCI posture).

Block 14: Store 0 into cactn(4,4) and fltp (current flight posture alternative) into
cactn(5,4) by using utility function rload.

Block 15: Begin constructing a FOLLOW_GCI tactic alternative descriptor by setting the
format indicator iactn to 5 (flight tactics) and storage size lenalt to lactn(iactn).

Block 16: Store iactn and lenalt into cactn by using utility function rload.

Block 17: Pack the FOLLOW_GCI alternative into flight tactic alternative descriptor
altd1 using function indpk.

Block 18: Find the follow GCI tactic alternative index indln using function indalg. Then
return to the calling routine modsel.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-47 BRAWLER

DRAFT

FIGURE 2.20-11. GCITAC Functional Flow Diagram (Page 1 of 2).

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-48 Update: 12/31/97

DRAFT

FIGURE 2.20-11. GCITAC Functional Flow Diagram (Page 2 of 2).

Subroutine ALT41

Subroutine alt41 generates flight posture mission posture alternatives. Figure 2.20-12 is
the functional flow diagram which describes the logic used to implement alt41. The blocks
are numbered for ease of reference in the following discussion.

Block 1: Progress to the next flight posture alternative subtype by incrementing icall.

Block 2: Test if all subtypes have been processed (if icall = 4). If yes, proceed to block 3.
If no, proceed to block 4.

Block 3: Set subroutine parameter submor to false which tells the calling routine (aslct4)
that there are no more alternatives to process. Then return to the calling routine aslct4.

Block 4: Find alternative index ind using function indalg.

Block 5: Test if alternative ind exists. If no, then go back and start this process over (block
1). If yes, proceed to block 6.

Block 6: Use icall in a computed goto to select the alternative mission type to process.

Block 7: If icall = 1 (standard mission) then blocks 7 through 11 are performed to load the
alternative. This block begins the process by setting iactn (alternative format) to 8 (flight
posture) and the storage length lenalt to lactn(iactn).

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-49 BRAWLER

DRAFT

Block 8: Pack the flight posture alternative of subtype icall into posture alternative
descriptor altdsc using function indpk.

Block 9: Set althld, the alternative logical descriptor array, element 4 with 0, element 5
with fltp (current flight posture), and element 6 with kalt (alternative kind) using utility
function rload.

Block 10: Set the ignore GCI vector message flag igngcv to false.

Block 11: Set subroutine parameter submor to true which tells the calling routine (aslct4)
that there are more alternatives to process. Then return to the calling routine aslct4.

Block 12: Blocks 12 through 14 are performed if icall = 2 (bomber escort mission). This
block tests if the mission is not equal to 2, where 2 indicates an escort mission. If yes (not
escort), then go back to the beginning (block 1) to process the next subtype. If no (is an
escort mission), proceed to block 13.

Block 13: Test if no flight of bombers exists (bflt = 0). If yes (no bomber flight), then go
back to the beginning (block 1) to process the next subtype. If no (bomber flight exists),
proceed to block 14.

Block 14: Test if bomber flight bflt exists on the flight list ifltx. If no, then go back to the
beginning (block 1) to process the next subtype. If yes, proceed to block 7 to generate a
standard mission alternative.

Block 15: Blocks 15 and 16 are performed if icall = 3 (GCI mission posture). This block
tests if a previous GCI vector message exists. If not proceed to block 15. If yes then
proceed to block 7 to generate a standard mission alternative.

Block 16: Test if a previous GCI tactic message exists. If no, then go back to the beginning
(block 1) to process the next subtype. If yes, proceed to block 7 to generate a standard
mission alternative.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-50 Update: 12/31/97

DRAFT

FIGURE 2.20-12. ALT41 Functional Flow Diagram.

DRAFT
ASP-II for BRAWLER 6.3.4.2 • Flight Posture Decision

Update: 12/31/97 2.20-51 BRAWLER

DRAFT

Subroutine TLOSS

Subroutine tloss computes the expected hostile value killed (kill) and the expected friendly
value lost (risk) for a candidate flight posture alternative. Figure 2.20-13 is the functional
flow diagram which describes the logic used to implement tloss. The blocks are numbered
for ease of reference in the following discussion.

Block 1: Compute interim a priori factor, af, as a function of wta (a priori factor weight),
killa (a priori expected hostile value killed), and riska (a priori expected friendly value lost).

Block 2: Compute interim situational factor, s,f as a function of wta, kills (situational
expected hostile value killed), risks (situational expected friendly value lost), foff (offensive
situational factor weight), and fdef (defensive situational factor weight).

Block 3: Compute interim a priori factor weight, wa, as af/(af+sf).

Block 4: Compute interim a priori factor weight, ws, as 1-wa.

Block 5: Compute the total expected friendly value lost, risk, as wa*riska + ws*risks*fdef.

Block 6: Compute the total expected hostile value killed, kill, as wa*killa + ws*kills*foff.
Then return to the calling routine aproj4.

DRAFT
6.3.4.2 • Flight Posture Decision ASP-II for BRAWLER

BRAWLER 2.20-52 Update: 12/31/97

DRAFT

FIGURE 2.20-13. TLOSS Functional Flow Diagram.

2.20.4 Assumptions and Limitations

Entities making flight leader posture decisions are limited to aircraft. Sam sites and stand-
off jammers are not considered in the decision process.

2.20.5 Known Problems or Anomalies

An error in the computed goto in Block 3 of subroutine AKSHN4 causes the mission,
offensive, and defensive values for the SAM Site and Follow GCI postures to be incorrectly
set to values corresponding to a mission posture instead of the desire posture. The effect
of this may be to cause players in the SAM Site and Follow GCI postures to be more or less
aggressive than desired.

START

1
AF = WTA x (KILLA 2 + RISKA2)

2
SF = (1-WTA) x ((KILLS x FOFF) 2

 + (RISKS x FDEF) 2)

3
WA = AF/(AF+SF)

4
WS = 1– WA

5
RISK = WA x RISKA +
WS x RISKS x FDEF

6
KILL = WA x KILLA +
WS x KILLS x FOFF

RETURN

